Pravac

Svojstva pravca

Mat A
Mat B
Udaljenost točke od pravca
Udaljenost točke $A(x_0,y_0)$ od pravca $Ax+By+C$ računamo:
\( d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}} \)
Ako je pravac zadan u obliku $y=kx+l$, formula glasi:
\( d=\frac{\left|k x_{0}+l-y_{0}\right|}{\sqrt{1+k^{2}}} \)
Međusobni položaj dvaju pravaca
Dva pravca se mogu sijeći u jednoj točki, uopće se ne sijeći(paralelni su) ili se preklapati.
Do svakog od ovih slučajeva dođemo rješavanjem sustava jednadžbi koji je nastao od jednadžbi ta dva pravca.
\( \left\{\begin{array}{l} A_{1} x+B_{1} y+C_{1}=0 \\ A_{2} x+B_{2} y+C_{2}=0 \end{array}\right. \)
 Međusobni položaj dvaju pravaca
 Međusobni položaj dvaju pravaca
Kut između dva pravca
Kada pričamo o kutu između pravaca, uvijek mislimo na onaj manji.
Ako s $\alpha$ označimo taj kut, za pravce $y=k_1 x + l_2$ i $y=k_2 x + l_2$ vrijedi
\( tg\alpha=\left|\frac{k_{2}-k_{1}}{1+k_{1} k_{2}}\right| \)
Paralelnost i okomitost
Pravci su paralelni ako vrijedi sljedeće:
(imamo dvije formule, ovisno zapišemo li pravce u obliku $y=k_1 x + l_2$ i $y=k_2 x + l_2$ ili $A_1x+B_1y+C_1 = 0$ i $A_2x+B_2y+C_2$)
\( k_1 = k_2 \quad \text{ili} \quad \frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}} \)
Pravci su okomiti ako vrijedi sljedeće:
(imamo dvije formule, ovisno zapišemo li pravce u obliku $y=k_1 x + l_2$ i $y=k_2 x + l_2$ ili $A_1x+B_1y+C_1 = 0$ i $A_2x+B_2y+C_2$)
\( k_{1} k_{2}=-1 \quad \text{ili} \quad A_{1} A_{2}+B_{1} B_{2}=0 \)
Pravci paralelni s koordinatnim osima
  • pravac paralelan s $x$-osi je oblika $y = l$, gdje je $l$ neki broj
  • pravac paralelan s $y$-osi je oblika $x = b$, gdje je $b$ neki broj
  •  Pravci paralelni s koordinatnim osima
     Pravci paralelni s koordinatnim osima
    Zadatci s državne mature:

    Svojstva pravca

    Srednja škola
    Matematika A
    Matematika B

    Svi videi su dostupni samo plaćenim korisnicima.

    Svakom tko kupi neki od naših proizvoda videi će se automatski prikazati i u našim online skriptama.

    Svi videi su dostupni samo plaćenim korisnicima.

    Svakom tko kupi neki od naših proizvoda videi će se automatski prikazati i u našim online skriptama.

    Svi videi su dostupni samo plaćenim korisnicima.

    Svakom tko kupi neki od naših proizvoda videi će se automatski prikazati i u našim online skriptama.
    Matematika A - pripreme za maturu