Linearne jednadžbe i nejednadžbe
Linearne jednadžbe
Linearna jednadžba je jednadžba oblika $a \cdot x + b = 0$ gdje je $a$ različit od $0$. Još se koristi naziv "jedna jednadžba s jednom nepoznanicom".
Riješiti jednadžbu znači odrediti sve brojeve $x$ tako da uvrštavanjem tih vrijednosti umjesto $x$-a, dobijemo nekakvu istinu, odnosno da lijeva i desna strana jednadžbe budu jednake. Takve $x$-eve zovemo rješenje jednadžbe.
Riješiti jednadžbu znači odrediti sve brojeve $x$ tako da uvrštavanjem tih vrijednosti umjesto $x$-a, dobijemo nekakvu istinu, odnosno da lijeva i desna strana jednadžbe budu jednake. Takve $x$-eve zovemo rješenje jednadžbe.
Broj rješenja linearne jednadžbe
Linearna jednadžba može imati jedno, nijedno i beskonačno mnogo rješenja.
Jednadžba ima jedno rješenje ako rješavanjem jednadžbe za $x$ dobijemo točno neki određeni broj.
Jednadžba nema rješenja ako rješavanjem dođemo do nekog izraza koji nikada nije istina. Takvi izrazi su oblika $0 \cdot x = b $ gdje je b bilo koji broj različit od $0$.
Jednadžba ima beskonačno mnogo rješenja ako je zadnji izraz do kojeg dođemo oblika $0 \cdot x = 0$.
Jednadžba ima jedno rješenje ako rješavanjem jednadžbe za $x$ dobijemo točno neki određeni broj.
Jednadžba nema rješenja ako rješavanjem dođemo do nekog izraza koji nikada nije istina. Takvi izrazi su oblika $0 \cdot x = b $ gdje je b bilo koji broj različit od $0$.
Jednadžba ima beskonačno mnogo rješenja ako je zadnji izraz do kojeg dođemo oblika $0 \cdot x = 0$.


Postupak rješavanja linearne jednadžbe
Svaku lineranu jednadžbu možemo riješiti u 4 koraka.
1. korak - Riješimo se svih zagrada i razlomaka (pomnožimo jednadžbu sa najmanjim zajedničkim nazivnikom).
2. korak - Sve nepoznanice stavimo na lijevu stranu, a sve brojeve na desnu.
3. korak - Posebno zbrojimo i oduzmemo sve nepoznanice s lijeve strane i posebno sve brojeve s desne strane.
4. korak - Podijelimo cijelu jednadžbu s bilo čim što stoji ispred nepoznanice, tj. s brojem koji stoji ispred nepoznanice.
1. korak - Riješimo se svih zagrada i razlomaka (pomnožimo jednadžbu sa najmanjim zajedničkim nazivnikom).
2. korak - Sve nepoznanice stavimo na lijevu stranu, a sve brojeve na desnu.
3. korak - Posebno zbrojimo i oduzmemo sve nepoznanice s lijeve strane i posebno sve brojeve s desne strane.
4. korak - Podijelimo cijelu jednadžbu s bilo čim što stoji ispred nepoznanice, tj. s brojem koji stoji ispred nepoznanice.



Video rješenja matura
Matematika, Fizika, Kemija, Hrvatski
Jednadžbe s apsolutnim vrijednostima
Jednadžbe s apsolutnim vrijednostima rješavamo isto kao i obične linearne jednadžbe. Razlika je samo u trenutku kada se želimo osloboditi apsolutnih vrijednosti.
Postupak pri oslobađanju je sljedeći:
- Jednadžbu rastavimo na dva slučaja.
- U prvom slučaju samo maknemo apsolutne vrijednosti, a u drugom ih pretvorimo u zagrade i stavimo minus ispred novonastale zagrade.
- Svaki slučaj rješavamo kao novi zadatak, tj. kao posebnu jednadžbu.
- Rješenje početne jednadžbe je svako rješenje do kojeg dođemo ovim načinom.
Postupak pri oslobađanju je sljedeći:
- Jednadžbu rastavimo na dva slučaja.
- U prvom slučaju samo maknemo apsolutne vrijednosti, a u drugom ih pretvorimo u zagrade i stavimo minus ispred novonastale zagrade.
- Svaki slučaj rješavamo kao novi zadatak, tj. kao posebnu jednadžbu.
- Rješenje početne jednadžbe je svako rješenje do kojeg dođemo ovim načinom.


Zadatci s državne mature: