Kvadratna funkcija

Graf kvadratne funkcije

Mat A
Mat B
Parabola je ime za graf kvadratne funkcije, jednadžbe $y = ax^2 + bx + c$.
Tjeme parabole $T$ s koordinatama $(x_0, y_0)$ je "najisturenija" točka parabole, a koordinate dobivamo formulom:
\( x_{0}=-\frac{b}{2 a} \quad i \quad y_{0}=\frac{4 a c-b^{2}}{4 a} \)
Kažemo da kvadratna funkcija ima minimum/maksimum u $x_0$, a da je vrijednost tog minimuma/maksimuma broj $y_0$.
U slučaju minimuma, kvadratna funkcija će se prvo spuštati do tjemena, odnosno padati, a onda uspinjati, odnosno rasti. Kod maksimuma je obrnuto, prvo rastemo do tjemena, a onda padamo.
 Tjeme parabole
 Tjeme parabole
Vodeći koeficijent
Vodeći koeficijent, odnosno broj $a$ koji se nalazi ispred $x^2$ određuje hoće li parabola biti okrenuta otvorom prema gore ili prema dolje.
  • $a > 0 \implies$ otvor okrenut prema gore, tj. $a$ je pozitivan pa se parabola "smije" :)
  • $a < 0 \implies$ otvor okrenut prema dolje, tj. $a$ je negativan pa je parabola "tužna" :(

  • Druga stvar, ako ne gledamo predznak ispred broja $a$, što je on veći po svojoj vrijednosti, to je parabola uža.
     Otvor parabole
     Otvor parabole
    Diskriminanta
    Slično kao u prošloj lekciji, diskriminanta će nam govoriti koliko imamo nultočki na grafu kvadratne funckije. Formula je ista $D = b^2 -4ac$.
    Zajedno s vodećim koeficijentom, diskriminanta nam može dati jako dobro ideju o izgledu i položaju same parabole.
     Diskriminanta i vodeći koeficijent
     Diskriminanta i vodeći koeficijent
    Nultočke kvadratne funkcije
    Nultočkama kvadratne funkcije $f(x) = ax^2 + bx + c$ ćemo zvati brojeve $x_1$ i $x_2$, ili samo jedan od njih, za koje vrijedi $f(x_1) = f(x_2) = 0$. Drugim riječima, nultočke će biti oni $x$-evi koji su rješenje kvadratne jednadžbe $ax^2 + bx + c = 0$.
    Kada crtamo, to će biti oni $x$-evi gdje graf siječe x-os.
    Preko nultočki također možemo doći i do tjemena parabole $T(x_0, y_0)$.
    \( x_0 = \frac{x_1+x_2}{2} \quad i \quad y_0 = ax_0^2 + bx_0 + c \)
     Nultočke kvadratne funkcije
     Nultočke kvadratne funkcije
    Crtanje grafa kvadratne funkcije
    Parabolu ćemo crtati u 3 koraka.
    1. Odredimo nultočke kvadratne funkcije.
    2. Odredimo koordinate tjemena preko jedan od dva, gore spomenuta, načina.
    3. Povučemo parabolu tako da prolazi kroz jednu nultočku, zatim kroz tjeme i onda kroz drugu nultočku. Pazimo da je kod tjemena zaobljena, da nema "špic", i da nam parabola ne kreće/završava u nekoj nultočki, nego da prolazi barem malo kroz njih.
     Graf kvadratne funkcije
     Graf kvadratne funkcije
    Presjek parabole i pravca
    Parabola i pravac mogu se sijeći u dvije točke, dodirivati u jednoj točki ili uopće ne sijeći.
    Izjednačimo kvadratnu funkciju $ax^2 + bx + c$ s pravcem $kx + l$ i prebacimo sve na lijevu stranu te sredimo. Diskriminanta novonastale kvadratne jednadžbe nam slično kao i prije govori koliko imamo sjecišta parabole i pravca, a rješenja ove, nove kvadratne jednadžbe su upravo prve koordinate sjecišta parabole s pravcem.
     Parabola i pravac
     Parabola i pravac
    Zadatci s državne mature:

    Graf kvadratne funkcije

    Zadatak 1 - ljeto
    Zadatak 2 - ljeto
    Matematika A
    Pripreme za maturu