Eksponencijalna i logartiamska funkcija
Eksponencijalne i logaritamske nejednadžbe
Eksponencijalne nejednadžbe
Eksponencijalna nejednadžba je nejednadžba kod koje je nepoznanica u eksponentu. Drugim riječima, to je jednadžba oblika $a^x >( \geq) \; b$ ili $a^x 0$.
Eksponencijalne nejednadžbe rješavat ćemo na isti način kao i jednadžbe - obje strane ćemo htjeti napisati kao potenciju iste baze. U trenutku kada želimo prekrižiti baze, imat ćemo dva slučaja o kojima će ovisiti smjer znaka nejednakosti. Pogledamo bazu potencije, koju smo ovdje označili sa $a$, pa odlučimo:
$a>1 \implies$ znak nejednakosti ostaje isti
$0 < a<1 \implies$ okrećemo znak nejednakosti


Logaritamske nejednadžbe
Logaritamska nejednadžba je nejednadžba kod koje je nepoznanica u argumentu ili bazi logaritma. Drugim riječima, to je jednadžba oblika $\log_{a}x > b$, gdje je $a>0$ i $a \neq 1$. Kada je nepoznanica baza, onda je oblik $\log_{x}a > b$. U oba slučaja, umjesto znaka $>$, može stajati bilo koji od drugih znakova nejednakosti $
Logaritamske nejednadžbe rješavat ćemo na isti način kao i jednadžbe(i dalje pazimo na uvjet), sve do trenutka kada želimo nepoznanicu izbaciti iz logaritma. Naše pravilo će se malo promijeniti - sada glasi "srednji-lijevi-desni". Dalje, ovisno o bazi logaritma, koju smo ovdje označili sa $a$, imamo dva slučaja:
$a>1 \implies$ znak nejednakosti ostaje isti
$0 < a<1 \implies$ okrećemo znak nejednakosti



Video rješenja matura
Matematika, Fizika, Kemija, Hrvatski
Ako je nepoznanica u bazi, samo se pažljivo riješimo logaritma koristeći "lijevi, desni, srednji" i znak nejednakosti ostavimo kakav je i bio.
Zadatci s državne mature: