Eksponencijalna i logartiamska funkcija

Eksponencijalne i logaritamske nejednadžbe

Mat A
Eksponencijalne nejednadžbe
Eksponencijalna nejednadžba je nejednadžba kod koje je nepoznanica u eksponentu. Drugim riječima, to je jednadžba oblika $a^x >( \geq) \; b$ ili $a^x 0$.
Eksponencijalne nejednadžbe rješavat ćemo na isti način kao i jednadžbe - obje strane ćemo htjeti napisati kao potenciju iste baze. U trenutku kada želimo prekrižiti baze, imat ćemo dva slučaja o kojima će ovisiti smjer znaka nejednakosti. Pogledamo bazu potencije, koju smo ovdje označili sa $a$, pa odlučimo:
  • $a>1 \implies$ znak nejednakosti ostaje isti
  • $0 < a<1 \implies$ okrećemo znak nejednakosti
  • Eksponencijalna nejednadžba
    Eksponencijalna nejednadžba
    Logaritamske nejednadžbe
    Logaritamska nejednadžba je nejednadžba kod koje je nepoznanica u argumentu ili bazi logaritma. Drugim riječima, to je jednadžba oblika $\log_{a}x > b$, gdje je $a>0$ i $a \neq 1$. Kada je nepoznanica baza, onda je oblik $\log_{x}a > b$. U oba slučaja, umjesto znaka $>$, može stajati bilo koji od drugih znakova nejednakosti $
    Logaritamske nejednadžbe rješavat ćemo na isti način kao i jednadžbe(i dalje pazimo na uvjet), sve do trenutka kada želimo nepoznanicu izbaciti iz logaritma. Naše pravilo će se malo promijeniti - sada glasi "srednji-lijevi-desni". Dalje, ovisno o bazi logaritma, koju smo ovdje označili sa $a$, imamo dva slučaja:
  • $a>1 \implies$ znak nejednakosti ostaje isti
  • $0 < a<1 \implies$ okrećemo znak nejednakosti
  • Logaritamska nejednadžba
    Logaritamska nejednadžba
    Video rješenja matura
    Matematika, Fizika, Kemija, Hrvatski
    Ako je nepoznanica u bazi, samo se pažljivo riješimo logaritma koristeći "lijevi, desni, srednji" i znak nejednakosti ostavimo kakav je i bio.
    Matematika A
    Pripreme za maturu
    Zadatci s državne mature:

    Eksponencijalne i logaritamske nejednadžbe

    Zadatak 1 - ljeto
    Zadatak 2 - ljeto