Napravimo pravac okomit na $x$-os koji prolazi kroz točku $(1,0)$. Neka je $T$ neka točka na brojevnoj kružnici. Povucimo pravac kroz ishodište koordinatnog sustava i kroz točku $T$ te pogledamo gdje se siječe s uspravnim pravcem s početka. Točka koja tako nastane ima koordinate $(1,\operatorname{tg}\alpha)$, gdje je $\alpha$ bio kut na brojevnoj kružnici. Drugim riječima, tangens kuta $\alpha,$ u oznaci $\operatorname{tg} \alpha$, je veličina do koje dođemo kada vidimo koliko smo se morali popeti ili spustiti na okomitom pravcu da bi došli do sjecišta.
Napravimo pravac okomit na $y$-os koji prolazi kroz točku $(0,1)$. Neka je $T$ neka točka na brojevnoj kružnici. Povucimo pravac kroz ishodište koordinatnog sustava i kroz točku $T$ te pogledamo gdje se siječe s vodoravnim pravcem s početka. Točka koja tako nastane ima koordinate $(\operatorname{ctg} \alpha ,1)$, gdje je $\alpha$ bio kut na brojevnoj kružnici. Drugim riječima, kotangens kuta $\alpha$, u oznaci $\operatorname{ctg} \alpha$, je veličina do koje dođemo kada vidimo koliko smo se pomaknuli lijevo ili desno na vodoravnom pravcu da bi došli do sjecišta.
Funkcije tangens i kotangens mogu vratiti bilo koju vrijednost, ali nisu definirane za sve vrijednosti. Za sve vrijednosti $\alpha = \frac{\pi}{2} + 2k\pi$, gdje je $k$ bilo koji cijeli broj (pišemo $k \in \mathbb{Z}$), funkcija tangens nije definirana, tj. ne možemo ju izračunati. Slično, kontangens nije definiran za $\alpha = k\pi$, $k \in \mathbb{Z}$.
Za tangens i kotangens vrijede sljedeće formule:
Predznaci funkcija tangens i kotangens su sljedeći:
- 1. kvadrant: tangens $+$, kotangnes $+$
- 2. kvadrant: tangens $-$, kotangnes $-$
- 3. kvadrant: tangens $+$, kotangnes $+$
- 4. kvadrant: tangens $-$, kotangnes $-$