Promatrat ćemo funkciju $f(x)=A \operatorname{tg} (Bx+C) + D$ i crtati njezin graf koji se zove tangensoida.
Međutim, idemo prvo redom vidjet što svaki od koeficijenata $A, B, C$ i $D$ znači.
$A$ utječe na strminu grafa funkcije i na rast/pad. Što je $A$ veći po apsolutnoj vrijednosti, to je graf strmiji. Ako je $A$ negativan, tangens će po dijelovima padati, a ako je pozitivan, onda će rasti.
$B$ utječe na period funkcije tangens, odnosno koliko često će se ponoviti isti dio funkcije. Još možemo gledati i koliko puta se graf funkcije “izduži”. Također, preko $B$ određujemo i asimptote. One su oblika $x = \frac{\frac{\pi}{2}}{B}$. Formula za određivanje perioda $P$ za tangens je
$C$ govori za koliko pomičemo početnu funkciju lijevo ili desno. Taj pomak računamo po formuli $- \frac{C}{B}$. Ako je pomak negativan, idemo lijevo, a ako je pozitivan, idemo desno.
$D$ govori za koliko pomičemo početnu funkciju gore ili dolje. Ako je $D$ pozitivan, za taj broj podignemo cijelu funkciju gore, a ako je negativan, spustimo ju za taj broj.
Crtanje grafa funkcije tangens
Graf funkcije $f(x)=A \operatorname{tg} (Bx+C) + D$ crtat ćemo u 4 koraka.
1. Odredimo period funkcije preko formule $P = \frac{\pi}{B}$. Asimptote su pravci $x = \frac{P}{2}$ i $x =- \frac{P}{2}$.
2. Odredimo horizontalni pomak preko formule $T = - \frac{C}{B}$.
3. Napravimo skicu grafa - moramo početi od lijeve asimptote najbliže $y$-osi i povući liniju koja što više liči na tangens tako da se približavamo obje asimptote, ali ih ne dotičemo. Strmina nije toliko bitna, ali bitno je da prođemo kroz točku $(0, 0)$.
4. Za kraj, cijeli graf još pomaknemo lijevo ili desno ovisno o broju $T$ i podignemo ili spustimo za vrijednost $D$. Sjetimo se, ako je $T$ negativan, idemo desno, a ako je pozitivan idemo lijevo. Ako je $D$ pozitivan, idemo gore, a ako je negativan idemo dolje. Dakle, sve će isto izgledati, samo malo lijevo/desno i više/niže u odnosu na skicu grafa koji smo napravili pod 3.
Graf funkcije kotangens
Graf funkcije kotangens ćemo crtati preko tangensa, slično kao kosinus preko sinusa. Opet u argument kotangensa, pored $x$-a, ubacimo $+ \frac{\pi}{2}$ i zamijenimo ga s funkcijom tangens koju znamo nacrtati. Ipak, moramo još okrenuti sliku koju dobijemo gore-dolje i onda će naš graf biti graf funkcije kotangens.